Problem 22

Right-angled triangles are constructed as in the figure. Each triangle has height 1 and its base is the hypotenuse of the preceding triangle. Show that this sequence of triangles makes indefinitely many turns around P by showing that $\sum \theta_{n}$ is a divergent series.

FIGURE FOR PROBLEM 22

Solution

The first objective is to find an expression for θ_{n}. We do this by considering the nth triangle.

Figure 1: The nth triangle.
This is a right triangle, so we can use trigonometry to relate θ_{n} to the sides. We'll use tangent since the only Taylor series for inverse functions available on page 768 is $\tan ^{-1} x$.

$$
\tan \theta_{n}=\frac{1}{h_{n-1}}
$$

We determine h_{n-1} by finding h_{1}, then h_{2}, and trying to figure out a pattern.

$$
\begin{array}{lll}
h_{1}^{2}=1^{2}+1^{2}=2 & \rightarrow & h_{1}=\sqrt{2} \\
h_{2}^{2}=1^{2}+h_{1}^{2}=1^{2}+2=3 & \rightarrow & h_{2}=\sqrt{3} \\
h_{3}^{2}=1^{2}+h_{2}^{2}=1^{2}+3=4 & \rightarrow & h_{3}=\sqrt{4} \\
h_{4}^{2}=1^{2}+h_{3}^{2}=1^{2}+4=5 & \rightarrow & h_{4}=\sqrt{5}
\end{array}
$$

We can see that $h_{n-1}=\sqrt{n}$. Thus,

$$
\tan \theta_{n}=\frac{1}{\sqrt{n}}
$$

and

$$
\theta_{n}=\tan ^{-1} \frac{1}{\sqrt{n}} .
$$

We now have to show that

$$
\sum_{n=1}^{\infty} \tan ^{-1} \frac{1}{\sqrt{n}}
$$

is a divergent series. The Taylor series for $\tan ^{-1} x$ is given on page 768 as

$$
\tan ^{-1} x=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots
$$

Plug in $1 / \sqrt{n}$ for x.

$$
\begin{aligned}
\tan ^{-1} \frac{1}{\sqrt{n}} & =\frac{1}{\sqrt{n}}-\frac{1}{3}\left(\frac{1}{\sqrt{n}}\right)^{3}+\frac{1}{5}\left(\frac{1}{\sqrt{n}}\right)^{5}-\frac{1}{7}\left(\frac{1}{\sqrt{n}}\right)^{7}+\cdots \\
& =\frac{1}{n^{1 / 2}}-\frac{1}{3} \cdot \frac{1}{n^{3 / 2}}+\frac{1}{5} \cdot \frac{1}{n^{5 / 2}}-\frac{1}{7} \cdot \frac{1}{n^{7 / 2}}+\cdots
\end{aligned}
$$

Substituting the Taylor expansion into the series gives us

$$
\begin{aligned}
\sum_{n=1}^{\infty} \tan ^{-1} \frac{1}{\sqrt{n}} & =\sum_{n=1}^{\infty}\left(\frac{1}{n^{1 / 2}}-\frac{1}{3} \cdot \frac{1}{n^{3 / 2}}+\frac{1}{5} \cdot \frac{1}{n^{5 / 2}}-\frac{1}{7} \cdot \frac{1}{n^{7 / 2}}+\cdots\right) \\
& =\sum_{n=1}^{\infty} \frac{1}{n^{1 / 2}}-\sum_{n=1}^{\infty} \frac{1}{3} \cdot \frac{1}{n^{3 / 2}}+\sum_{n=1}^{\infty} \frac{1}{5} \cdot \frac{1}{n^{5 / 2}}-\sum_{n=1}^{\infty} \frac{1}{7} \cdot \frac{1}{n^{7 / 2}}+\cdots \\
& =\sum_{n=1}^{\infty} \frac{1}{n^{1 / 2}}-\frac{1}{3} \sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}}+\frac{1}{5} \sum_{n=1}^{\infty} \frac{1}{n^{5 / 2}}-\frac{1}{7} \sum_{n=1}^{\infty} \frac{1}{n^{7 / 2}}+\cdots
\end{aligned}
$$

All of these series on the right side are p-series, which have the form

$$
\sum_{n=1}^{\infty} \frac{1}{n^{p}}
$$

and only converge if $p>1$. The first series has $p=1 / 2$, which means it is a divergent series. Therefore,

$$
\sum_{n=1}^{\infty} \theta_{n}
$$

is a divergent series, which means the sequence of triangles makes indefinitely many turns around P.

